 The nucleus cont The nucleus cont The nucleus has a The nucleus has a 	ains negatively cha a positive charge an	arged protons.	led by negative	-			
2 Which term is define 1. nucleus	ed as the region in a 2. orbital	n atom where 3. quant		most likely t 4. spectra	to be located?	,	
3 What is the number of	of electrons in an at	tom of scandi	ım? 1.21	2. 24	3. 45	4. 6	6
4 Which particle has the	ne least mass? 1. a	proton 2.	an electron	3. a helium	n atom 4. a	hydrogen	atom
5 Which electron trans 1. first shell to the t 2. second shell to th	hird shell	3. third sl	n a release of enell to the four shell to the sec	th shell			
6 On the Periodic Tabl 1. atomic mass	e, the number of pr 2. atomic number		om of an elemed oxidation st		ed by its number of va	lence elect	rons
7 Which type of formu 1. ionic 2	ila shows an elemen 2. structural	nt symbol for 3. empirio		l a line for each	ch bond betw	een atoms	?
8 What is conserved du 1. charge	uring all chemical r 2. density	reactions? 3. vapor p	ressure	4. melting p	point		
9 In which type of reac 1. synthesis	etion can two comp 2. decomposition		ge ions to forn single replace		-	s? e replacen	nent
10 At STP, two 5.0-gra These solid samples 1. mass	-	iated by their	-		ne density. 4. solubility i	n water	
11 What is the number	of electrons shared	d between the	atoms in an I_2	molecule?	1.7 2.2	3. 8	4. 4
12 Which substance ha	as nonpolar covalen 2. SO ₃	at bonds? 3. SiO ₂	4. Co	C1 ₄			

1 Which statement describes the structure of an atom?

13 Compared to a potassi 1. a smaller radius	ium atom, a potassium ion h 2. a larger rad		fewer protons	4. more protons
14 Which form of energy 1. chemical	v is associated with the rando 2. electrical	om motion of partic 3. nuclear	cles in a gas? 4. thermal	
1. H ₂ O _(L) at 373 K cha	nergy of water molecules de anges to $H_2O_{(L)}$ at 300. K anges to $H_2O_{(G)}$ at 373 K	3. $H_2O_{(S)}$ at 20	00. K changes to H ₂ 00 . K changes to H ₂ 0	()
16 The joule is a unit of	1. concentration	2. energy	3. pressure	4. volume
17 Compared to a sample a lower pressure 1. condenses to a liquit 2. is more soluble in v		e sample of helium s diatomic molecul ves more like an id	les	ature and
between the gas partic 1. The frequency of co 2. The frequency of co 3. The frequency of co	n a sealed, rigid container the cles when the sample is heat collisions increases, and the follisions increases, and the follisions decreases, and the follisions decreases.	ed? Force of collisions of corce of collisions if force of collisions of collisions of collisions.	decreases. ncreases. decreases.	h changes occur
19 At STP, which gaseou 1. 6.0 L of F _{2(G)}	as sample has the same number $2.4.5 \text{ L of } N_{2(G)}$ $3.$	ber of molecules as 3.0 L of H _{2(G)}	s 3.0 liters of N _{2(G)} ? 4. 1.5 L of Cl _{2(G)}	
Which statement expl 1. Each component in 2. Hydrocarbons are 3. The carbons in hydrocarbons in hydrocarbon in hydrocarbons in hydrocarbon in hyd	oil from various parts of the various these different percentant a mixture has a different so organic compounds. It is a mixture that is a mixture can be bonded in a mixture can be b	nges? colubility in water. n chains or rings.	ent percentages of h	nydrocarbons.
_	mple are the particles arrang $C_2H_{6(G)}$ 3. CH	ed in a crystal struction of the structure of the structu	cture? 4. CaI _{2(AQ)}	
22 When a reversible rea of reactants must be 1. decreasing	ction is at equilibrium, the c	oncentration of pro		entration qual

23 In chemical reaction of the reactants is eq		nce between the	potential energ	y of the product	ts and the potential energy
1. activation energy				4. heat of vaporization	
24 What occurs when a 1. an alternate reaction 2. an alternate reaction 3. the same reaction 4. the same reaction	on pathway v on pathway v pathway wit	vith a lower act vith a higher ac h a lower activa	ivation energy tivation energy tion energy		
25 What is the name of 1. 1-propanol	-	nd with the form propanamine		₂ NH ₂ ? ropanal	4. propanamide
26 Which compound is 1. CH ₃ COOH		C ₂ H ₅ OC ₂ H ₅ ? C ₂ H ₅ COOCH ₃	3. C ₃	H ₇ COCH ₃	4. C ₄ H ₉ OH
27 Ethanoic acid and 1- 1. aldehyde	butanol can a 2. amide		water and a cor . ester	mpound classifi 4. ether	ed as an
28 During an oxidation- 1. equal to the numb 2. equal to the numb	er of electron	ns lost	3. less than	gained is the number of e the number of p	
29 Which process requi 1. deposition		or a nonspontant electrolysis		ion to occur? pha decay	4. chromatography
30 Which pair of compo 1. CH ₃ OH & NaOH		ents one Arrhen CH ₃ OH & HC		Arrhenius base NO ₃ & NaOH	e? 4. HNO ₃ & HCl
31 Which electron conf 1. 2-7 3	iguration rep 2. 2-8	resents the elect		of neon in an e	excited state?
32 Some information ab	out the two	naturally occurr	ing isotopes of g	gallium is given	in the table below.
	Isotope	Natural Abundance (%)	Atomic Mass (u)		
	0 00	00 44	00 000		

Isotope	Natural Abundance (%)	Atomic Mass (u)		
Ga-69	60.11	68.926		
Ga-71	39.89	70.925		

Which numerical setup can be used to calculate the atomic mass of gallium? 1. (0.6011)(68.926~u) + (0.3989)(70.925~u) 3. (0.6011)(70.925~u) 2. (60.11)(68.926~u) + (39.89)(70.925~u) 4. (60.11)(70.925~u)

3. (0.6011)(70.925 u) + (0.3989)(68.926 u) 4. (60.11)(70.925 u) + (39.89)(68.926 u)

33 A student measures the mass and volume of a sample of copper at room temperature and 101.3 kPa. The mass is 48.9 grams and the volume is 5.00 cubic centimeters. The student calculates the density of the sample. What is the percent error of the student's calculated density?

1. 7.4%

2. 8.4%

3. 9.2%

4. 10.2%

34 What is the chemical formula for sodium sulfate?

1. Na₂SO₄

2. Na₂SO₃

3. NaSO₄

4. NaSO₃

35 Given the balanced equation representing a reaction:

$$2Na_{(S)} + Cl_{2(G)} \rightarrow 2NaCl_{(S)}$$
 energy

If 46 grams of Na and 71 grams of Cl₂ react completely, what is the total mass of NaCl produced?

1. 58.5 g

2. 117 g

3. 163 g

4. 234 g

36 Given the balanced equation representing a reaction:

$$2NO + O_2 \xrightarrow{1} 2NO_2$$
 energy

The mole ratio of NO to NO₂ is

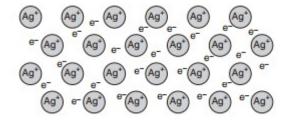
1. 1 to 1

2. 2 to 1

3. 3 to 2

4. 5 to 2

37 The particle diagram represents a solid sample of silver

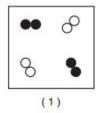

Which type of bonding is present when valence electrons move within the sample?

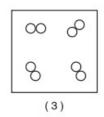
1. metallic bonding

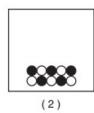
2. hydrogen bonding

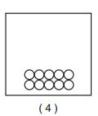
3. covalent bonding

4. ionic bonding

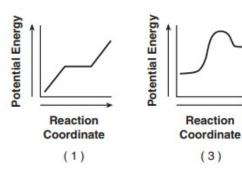

- 38 Given the formula representing a molecule: Which statement explains why the molecule is nonpolar?
 - 1. Electrons are shared between the carbon atoms and the hydrogen atoms.
 - 2. Electrons are transferred from the carbon atoms to the hydrogen atoms.
 - 3. The distribution of charge in the molecule is symmetrical.
 - 4. The distribution of charge in the molecule is asymmetrical.
- 39 A solid sample of a compound and a liquid sample of the same compound are each tested for electrical conductivity. Which test conclusion indicates that the compound is ionic?
 - 1. Both the solid and the liquid are good conductors.
 - 2. Both the solid and the liquid are poor conductors.
 - 3. The solid is a good conductor, and the liquid is a poor conductor.
 - 4. The solid is a poor conductor, and the liquid is a good conductor.
- 40 Which statement explains why 10.0 mL of a 0.50 M $H_2SO_{4(AQ)}$ (solution exactly neutralizes 5.0 mL of a 2.0 M $NaOH_{(AQ)}$ solution?
 - 1. The moles of $H^+_{(AQ)}$ equal the moles of $OH^-_{(AQ)}$.
 - 2. The moles of $H_2SO_{4(AO)}$ equal the moles of $NaOH_{(AO)}$.
 - 3. The moles of $H_2^2SO_{4(AQ)}$ are greater than the moles of $NaOH_{(AQ)}$.
 - 4. The moles of $H^+_{(AQ)}$ are greater than the moles of $OH^-_{(AQ)}$.

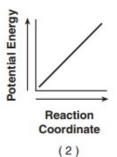

41 Which particle diagram represents one substance in the gas phase?

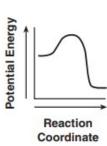

Key


○ = atom of one element

■ = atom of another element






42 Given the equation representing a chemical reaction at equilibrium in a sealed, rigid container: $H_{2(G)} + I_{2(G)} + \text{energy} \rightarrow 2HI_{(G)}$

When the concentration of $H_{2(G)}$ is increased by adding more hydrogen gas to the container at constant temperature, the equilibrium shifts

- 1. to the right, and the concentration of HI_(G) decreases
- 2. to the right, and the concentration of $HI_{(G)}$ increases
- 3. to the left, and the concentration of $HI_{(G)}$ decreases
- 4. to the left, and the concentration of $HI_{(G)}^{(-)}$ increases
- 43 Which diagram represents the potential energy changes during an exothermic reaction?

(4)

44 Which compound is classified as an ether?

- 1. CH₃CHO
- 2. CH₃OCH₃
- 3. CH₃COCH₃
- 4. CH₃COOCH₃

45 Given the equation representing a reversible reaction: $HCO_3^{-1}{}_{(AQ)} + H_2O_{(L)} \leftrightarrow H_2CO_{3(AQ)} + OH^{-1}{}_{(AQ)}$

$$HCO_{3}^{-1}(AQ) + H_{2}O_{(L)} \leftrightarrow H_{2}CO_{3(AQ)} + OH^{-1}(AQ)$$

Which formula represents the H⁺ acceptor in the forward reaction?

- 1. HCO₃
- 2. $H_2O_{(L)}$
- 3. H₂CO₃
- 4. OH (AQ)

46 What is the mass of an original 5.60-gram sample of iron-53 that remains unchanged after 25.53 minutes?

- 1. 0.35 g
- 2.0.70 g

3. 1.40 g

4. 2.80 g

47 Given the equation representing a nuclear reaction:

$$^{1}_{1}$$
 H + X \rightarrow $^{6}_{3}$ Li + $^{4}_{2}$ He

The particle represented by X is

 $^{10}_{5}$ Be

2 ⁹₄ Be

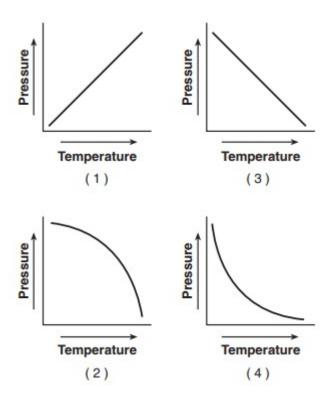
48 Fission and fusion reactions both release energy. However, only fusion reactions

- 1. require elements with large atomic numbers
- 3. use radioactive reactants

2. create radioactive products

4. combine light nuclei

49 The chart shows the crystal shapes and melting points of two forms of solid phosphorus.

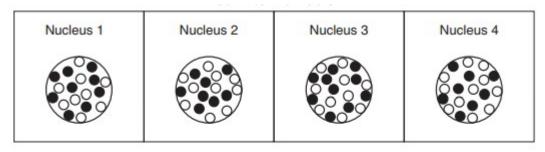

Two Forms of Phosphorus

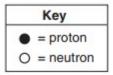
Form of Phosphorus	Crystal Shape	Melting Point (°C)		
white	cubic	44		
black	orthorhombic 🔷	610		

Which phrase describes the two forms of phosphorus?

- (1) same crystal structure and same properties
- (3) different crystal structures and different properties
- (2) same crystal structure and different properties
- (4) different crystal structures and same properties

50 Which graph shows the relationship between pressure and Kelvin temperature for an ideal gas at constant volume?




The elements in Group 17 are called halogens. The word "halogen" is derived from Greek and means "salt former."

- 51 State the trend in electronegativity for the halogens as these elements are considered in order of increasing atomic number.
- 52 Identify the type of chemical bond that forms when potassium reacts with bromine to form a salt.
- 53 Based on Table F, identify one ion that reacts with iodide ions in an aqueous solution to form an insoluble compound.

The diagrams below represent four different atomic nuclei.

Four Atomic Nuclei

- 54 Identify the element that has atomic nuclei represented by nucleus 1.
- 55 Determine the mass number of the nuclide represented by nucleus 2.
- 56 Explain why nucleus 2 and nucleus 4 represent the nuclei of two different isotopes of the same element.
- 57 Identify the nucleus above that is found in an atom that has a stable valence electron configuration.

The equation below represents a chemical reaction at 1 atm and 298 K.

$$2H_{2(G)} + O_{2(G)} \rightarrow 2H_2O_{(G)}$$

- 58 State the change in energy that occurs in order to break the bonds in the hydrogen molecules.
- 59 In the space in your answer booklet, draw a Lewis electron-dot diagram for a water molecule.
- 60 Compare the strength of attraction for electrons by a hydrogen atom to the strength of attraction for electrons by an oxygen atom within a water molecule.

Base your answers to questions 61 through 63 on the information below and on your knowledge of chemistry

A test tube contains a sample of solid stearic acid, an organic acid.

Both the sample and the test tube have a temperature of 22.0°C.

The stearic acid melts after the test tube is placed in a beaker with 320. grams of water at 98.0°C.

The temperature of the liquid stearic acid and water in the beaker reaches 74.0°C

- 61 Identify the element in stearic acid that makes it an organic compound.
- 62 State the direction of heat transfer between the test tube and the water when the test tube was placed in the water.
- 63 Show a numerical setup for calculating the amount of thermal energy change for the water in the beaker.

A nuclear reaction is represented by the equation below.

$$^{3}_{1}$$
 H \rightarrow $^{3}_{2}$ He + $^{0}_{-1}$ e

- 64 Identify the decay mode of hydrogen-3.
- 65 Explain why the equation represents a transmutation.

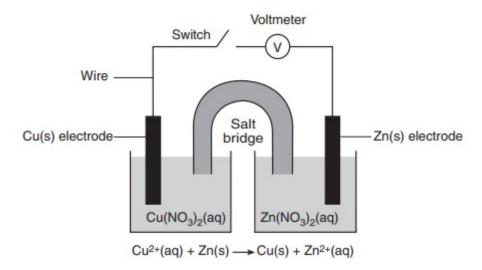
A technician recorded data for two properties of Period 3 elements. The data are shown in the table below.

Two Properties of Period 3 Elements

Element	Na	Mg	Al	Si	Р	S	CI	Ar
lonic Radius (pm)	95	66	51	41	212	184	181	_
Reaction with Cold Water	reacts vigorously	reacts very slowly	no observable reaction	no observable reaction	no observable reaction	no observable reaction	reacts slowly	no observable reaction

- 66 Identify the element in this table that is classified as a metalloid.
- 67 State the phase of chlorine at 281 K and 101.3 kPa.
- 68 State evidence from the technician's data which indicates that sodium is more active than aluminum.

Ammonia, $NH_{3(G)}$, can be used as a substitute for fossil fuels in some internal combustion engines. The reaction between ammonia and oxygen in an engine is represented by the unbalanced equation below.


$$NH_{3(G)} + O_{2(G)} \rightarrow N_{2(G)} + H_2O_{(G)} + energy$$

- 69 Balance the equation in your answer booklet for the reaction of ammonia and oxygen, using the smallest whole-number coefficients.
- 70 Show a numerical setup for calculating the mass, in grams, of a 4.2-mole sample of O_2 . Use 32 g/mol as the gram-formula mass of O_2 .
- 71 Determine the new pressure of a 6.40-L sample of oxygen gas at 300. K and 100. kPa after the gas is compressed to 2.40 L at 900. K.

Fruit growers in Florida protect oranges when the temperature is near freezing by spraying water on them. It is the freezing of the water that protects the oranges from frost damage. When $H_2O_{(L)}$ at 0°C changes to $H_2O_{(S)}$ at 0°C, heat energy is released. This energy helps to prevent the temperature inside the orange from dropping below freezing, which could damage the fruit. After harvesting, oranges can be exposed to ethene gas, C_2H_4 , to improve their color.

- 72 Write the empirical formula for ethene.
- 73 Explain, in terms of bonding, why the hydrocarbon ethene is classified as unsaturated.
- 74 Determine the gram-formula mass of ethene.
- 75 Explain, in terms of particle arrangement, why the entropy of the water decreases when the water freezes.
- 76 Determine the quantity of heat released when 2.00 grams of $H_2O_{(L)}$ freezes at 0°C.

A student constructs an electrochemical cell during a laboratory investigation. When the switch is closed, electrons flow through the external circuit. The diagram and ionic equation below represent this cell and the reaction that occurs.

- 77 State the form of energy that is converted to electrical energy in the operating cell.
- 78 State, in terms of the $Cu_{(S)}$ electrode and the $Zn_{(S)}$ electrode, the direction of electron flow in the external circuit when the cell operates.
- 79 Write a balanced equation for the half-reaction that occurs in the Cu half-cell when the cell operates.
- 80 State what happens to the mass of the Cu electrode and the mass of the Zn electrode in the operating cell.

A solution is made by dissolving 70.0 grams of KNO_{3(S)} in 100. grams of water at 50.°C and standard pressure.

- 81 Show a numerical setup for calculating the percent by mass of KNO₃ in the solution.
- 82 Determine the number of additional grams of KNO₃ that must dissolve to make this solution saturated.

Vinegar is a commercial form of acetic acid, $HC_2H_3O_{2(AO)}$. One sample of vinegar has a pH value of 2.4.

- 83 Explain, in terms of particles, why HC₂H₃O_{2(AO)} can conduct an electric current.
- 84 State the color of bromthymol blue indicator in a sample of the commercial vinegar.
- 85 State the pH value of a sample that has ten times fewer hydronium ions than an equal volume of a vinegar sample with a pH value of 2.4